J. - 2801 . 55C

R

rT982A

THE ASTROPHYSICAL JOURNAL, 280:L55-L58, 1984 May 15
© 1984. The American Astronomical Society. All rights reserved. Printed in U.S.A.

A FORMULA FOR THE SHAKURA-SUNYAEV TURBULENT VISCOSITY PARAMETER

V. M. CanuTo, 1. GOLDMAN, AND O. HUBICKYJ
NASA Goddard Institute for Space Studies, Goddard Space Flight Center, New York
Received 1983 August 8; accepted 1984 February 1

ABSTRACT

A formula for the Shakura-Sunyaev a-parameter is proposed in terms of the growth rate of the unstable modes
driving turbulence. In the case of convective instability in a differentially rotating disk, « is given in terms of the

parameters of the disk, namely 7, R, p, and &.

Subject headings: convection — stars: accretion — turbulence

I. INTRODUCTION

In the absence of a complete theory, turbulence is tradition-
ally simulated in almost all astrophysical studies by the intro-
duction of a turbulent viscosity v,

v, =§ud,, (1)

where /, and v, are typical turbulent lengths and turbulent
velocities and £ an unknown parameter. Since most of the
energy is contained in the largest eddies, equation (1) is
further written as

v, = ac,H, 2)

where c, is the speed of sound, H some characteristic scale
height of the problem, and « an unknown parameter. Equa-
tion (2) has been widely used in the study of accretion
disks (Shakura and Sunyaev 1973; Shakura, Sunyaev, and
Zilitinkevich 1978; Pringle 1981), and the parameter a has
come to be known as the Shakura-Sunyaev a-parameter.

It is the aim of this Letfer to propose a formula for « in
terms of the growth rate n(k) of the unstable modes of the
physical mechanism that generates turbulence. As a particular
example, we discuss turbulent convection, whose relevance to
the primitive solar nebula was first discussed by Lin and
Papaloizou (1980) and further worked out by Lin (1981), Lin
and Bodenheimer (1982), Cassen and Summers (1983),
and Cameron (1983). The role of convection in accretion
disk models has been discussed by Shakura, Sunyaev, and
Zilitkevich (1978), Livio and Shaviv (1977), Liang (1977), Vila
(1978), Tayler (1980), and Smak (1982). Our main result,
equations (9) and (12), is that a is a well-defined function of
the parameters of the problem, i.e., T, R, p, and .

I1. TURBULENCE MODEL

A major difficulty in constructing an analytical model for
fully developed turbulence lies in the well-known closure
problem whereby the equation for (v") (v is the fluctuating or
turbulent velocity and ( ) denotes ensemble average) depends
on terms of the form (v”*') which in turn satisfy an equation
involving (v"*?), thus giving rise to an infinite chain of
connected equations. For (v?), one has the well-known en-

ergy equation (Batchelor 1970)
e(k) = [,, + [Tw (k) dk]szkzF(k) dk,
k 0
v (k)= 2[" F(k) dk. 3)
k .

The energy (per unit mass and time) (k) fed into the system
at the scale k is partly dissipated by viscous forces, #(Vv)?* ~
vk?v?, and partly transferred by the nonlinear terms {vov) to
wavenumbers higher than k. Following the original suggestion
by Heisenberg, the nonlinear term is written in equation (3) as
the product of two factors. The first represents the loss of
energy by the eddies in the interval 0-k, and the second
represents the redeposition of the same energy into the re-
maining interval k—c0. Since Heisenberg’s suggestion amounts
to a renormalization of the molecular viscosity », it has
become customary to introduce the notion of turbulent viscos-

ity v,(k),

v, (k) =fk°°~p(k)dk. (4)

It is important however to stress that while » is constant, »,(k)
is not. Moreover, ordinary viscosity dissipates energy into
heat, whereas the nonlinear term, or equivalently »,(k), does
not: it merely transfers energy from the large eddies to the
smaller ones. (The fact that energy as a whole is conserved by
the nonlinear terms can be seen from the fact that the integral
over all k values of the nonlinear terms is zero.)

The goal of any theory of turbulence is that of providing a
“closure,” i.c., a relation between ¥(k) and F(k), so that
equation (3) can be solved for the spectral function F(k).
The only existing successful model of turbulence is that of
Heisenberg and Kolmogorov (hereafter HK, Batchelor 1970).
We briefly review this model in order to point out why it
cannot be used to estimate a in equation (2). To solve equa-
tion (3), one needs two ingredients, e(k) and ¥ (k). Broadly
speaking, a turbulent medium can be thought of as composed
of (a) large eddies and (») medium to small eddies. The latter
originate from the breakup of the former, and being a sec-
ondary product, these eddies can no longer be expected to
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carry the imprint of the detailed nature of the stirring mecha-
nism. Different stirring mechanisms yield different forms of
e(k), i-e., they pump energy to a given scale at different rates.
By construction, the HK model is a model for those relatively
small eddies sufficiently removed in & space from the energy
source to feel all the same energy input, e(k) = ¢ = constant.
This choice also has implications on the form of ¥ (k). In fact,
the restriction to eddies far removed from the energy source
implies that the dimensionful quantities that make up e(k)
(rotation, magnetic fields, convection, etc.) are all lumped into
a single structureless constant . The only two remaining
variables are F(k) and k, and so V(k) = yFY?(k)k %2
With this, equation (3) can be solved (Batchelor 1970), and the
results are (» = 0)

F(k) = (8e/9v)°k™7,  w(k)=tvl,  (5)
with ¢ = y/3 /4. Since the assumptions underlying the HK
model] restrict its application to the small eddies, equation (5)
cannot be used to estimate a in equation (2) which refers to
the largest eddies.

We must therefore abandon the HK model and derive an
expression for e(k) that explicitly takes into account the
nature of different feeding mechanisms. Using the work of
Ledoux, Schwarzschild, and Spiegel (1961), we obtain

e(k) = 2fk"[n(k)+uk2]F(k) dk, (6)

where n(k) is the growth rate of the unstable modes that feed
energy into the system, eventually generating turbulence ( & is
the wavenumber of the largest eddy which in eq. [3] was taken
to be zero). Equation (6) is clearly very general since all the
features of the specific instability at work in a given problem
are included in n(k). Equation (3) then becomes

fk’:F(k)n(k)dk= V,(k)_/,:F(k)kzdk. )

To solve equation (7) for F(k), one needs a new closure since
the HK closure is no longer applicable to this region. Two of
us (Canuto and Goldman 1984) have recently proposed a
closure formula that allows an analytic solution of equation
(7) in terms of n(k). For the case of turbulent convection, the
results compared very favorably with laboratory data. How-
ever, for the limited purpose of calculating a, one does not
need a full theory of turbulence, i.c., the form of F(k). In fact,
since we are interested only in », at k = k&, the explicit form
of F(k) is irrelevant since both sides of equation (7) are linear
in F(k) and at k = kg, F(k,) cancels out of the equation. We
therefore suggest that, for this specific problem, we can regard
equation (7) not as an equation for F(k) but as an algebraic
relation giving »,( k) at, and only at, k = k. Therefore, taking
the limit for & — k,, equation (7) vields

n(ko)

vt(k()) = k2
0

: (8)

which is our main result.
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For simplicity, let us approximate the actual geometry by a
plane-parallel model with the z-component of &, k,, satisfying
the boundary conditions k,L = nw (n = 1,2, ...), where 0 <
z< L. We have koL =m/1 + x, x = (k2 + k2)/k?. Using
equations (8) and (2), we derive

S Eel o

a=—
77'2(1 +JC) Cs

III. CONVECTIVE TURBULENCE

A general treatment of the stability conditions of a differen-
tially rotating flow has been given by Goldreich and Schubert
(1967, hereafter GS). The growth rate n(k) satisfies in general
a fifth-order polynomial given by equations (17)-(22) of GS.
Depending on the specific problem at hand, simplifications are
possible. For example, in the cases where Ap/p << 1 and
dp/dz < k,p, the first three terms of the continuity equation
(eq. [20] of GS) can be neglected, with the result that the
growth rate satisfies a third-order equation. Assuming further
that Ax/x < 1, where x is defined below, the final result can
be written as (for a Keplerian disk)

L Ax aT* n+ xk?
L (n+ xk?)(n + vk?) = 1- .
VX( Xk?)(n + vk?) Ax p+ vk?

1+ x
(10)

Here, x is the thermometric conductivity (related to the ther-

mal conductivity K by c,px = K), v is the kinematic viscosity,

2 is the Rayleigh number = g,@BL*/x», & is the coefficient of

thermal expansion, f is the temperature gradient excess over

the adiabatic gradient, g, is the z component of gravity

(g8.=g,=0), £=(0,0,Q) is the rotation vector, T* = -
4L*Q3%/v?, where Q% = Q%(1 + RQ’/2Q) with @’ = dQ/dR,

is the effective Taylor number, and ¢ = v/x is the Prandtl

number. Introducing the dimensionless variable

n(ky)
(g.aB)"”

to be taken as the real, positive part of the solutions of
equation (10) for & = &,

N=

X oT* N+ N,
(N+N°)(N+0N0)-l+x(1 RBx N+0N0)’
1+ x)7n?
NO = (‘%0)1/2 2 (11)

equation (9) can be rewritten as (g, = gz/R)

- L Gapy (L) A (£)”
a=—(zap)"| 7 (1+x) ¢ \R) ~ (12)
To evaluate a, it is useful to express #Z¢ in terms of the
physical variables of the problem. Since in the case of radia-
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tive conduction, x = 4acT*(Bkc,p*) "', where k, is the
opacity, we derive

4
Po = 1.45 X 1033(%)(za3)((R”—;2))—3c;k5p. (13)

Equations (11)-(13) provide the determination of a.

IV. EFFECT OF ROTATION ON »,

While the effect of rotation on », can only be fully quan-
tified once equation (11) is solved for different values of the
parameters ¢, 07 * /%, and %o, we have chosen ¢ = 0 and
oT* /R = (z&B) ™' = 2 to illustrate the reduction in the value
of N due to rotation. The results are shown in Figure 1, where
we plot N/(1 + x) versus x for Zo = 10*,10'. For the first
value of o, convection sets in for any x, although the
maximum value is reduced by a factor of § with respect to the
Q@ = 0 case. For o = 10'°, a new feature appears, namely
equation (11) has no solutions (no convection) until x >
oT*/%. This feature can also be seen analytically by taking
Ro — oo in equation (11). This gives

vl e

which clearly shows that x must be greater than 67* /% for N
to be real.

For the two particular cases shown in Figure 1, we can
estimate the value of « using equation (12) and dp/dz = —g.,p,
p ~ o, ie, (H/c,Xg/R)"? = (2/T)/*. For the maximum
value of N/(1 + x) and for T’ = %, we obtain

a=0016(L/HY (%o =10"),

a=0009(L/H)Y (%o =10%). (15)
Since different values of oT*/# yield different values of a,
one cannot give a unique value for «, but the latter must be
determined consistently with the other equations for the disk.

V. CONVECTIVE FLUXES

For a complete description of the disk, one needs one more
quantity, the convective flux ® as a function of £ and #Ze. A
full discussion of this topic is outside the scope of this Letter,
but the following remarks may be of interest.

Lacking a complete theory, the most general form presently
available is the one derived with the (one-mode) mixing-length
theory (MLT; Spiegel 1963; Gough 1976, 1978), which gives

N3(@0)?,  (16)

° = pPBer X/ X =

1+x
with the coefficient 4 = 0.65. This equation has been used in
the study of the primitive solar nebula assuming constant N
and x (Lin and Papaloizou 1980).

The present analysis and Figure 1 show that N/(1 + x)isa
nonmonotonic function of x and £, indicating that the effect
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F16. 1.—Solutions of equation (11) for » = 0, with and without rota-
tion. The numbers on each curve are the values of Z¢. The quantity
oT* /% = (z&aB)~! has been taken as equal to 2.

of rotation on N is a complex one that can hardly be accounted
for by changing one of the scale parameters of the problem.
For this reason, the results based on this approximation (Lin
1981; Lin and Papaloizou 1980) must be taken with caution.

A formalism more general than the one-mode MLT ap-
proximation and one which is valid for arbitrary values of &
and %o has recently been developed by Canuto and Goldman
(1984).

VI. STABILITY OF THE DISK

Many papers have discussed the stability of a stationary
accretion disk against viscosity and temperature perturbations
(see Pringle 1981, and references therein). It was, however,
noted by Pringle that because of the arbitrariness in defining
v,, it is not clear whether the instabilities are real or just follow
from an improper viscosity law. Within the present frame-
work, the arbitrariness in the definition of », is no longer
present. Once an n(k) is chosen, the disk equations can be
solved, the numerical value of the function », = »,(T, R, Q)
found, and the conditions for thermal and viscosity stability
(egs. [7.4] and [7.6] of Pringle 1981) checked.

With this procedure, the global stability requirements be-
come a tool to assess the reality of the instability thought to
originate turbulence in the disk.

VII. OTHER TYPES OF INSTABILITIES

Since equation (2) is, in the ultimate analysis, a simple
parameterization of turbulent viscosity independently of
whether it is used in accretion disks, it may be useful to quote
forms for n(k) corresponding to instabilities other than con-
vection. Parker-like instabilities (Parker 1966) have recently
been generalized by Elmegreen (1982) to include self-gravity.
Thermal-convective instabilities have been worked out by
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Field (1965), Defouw (19704, b), and Goldsmith (1970), who
provide several expressions for n(k). Hide (1955), Skumanich
(1955), Spiegel and Unno (1962), and Chandrasekhar (1961)
have provided analytic expressions for n(k) corresponding to
Rayleigh-Taylor instabilities; and finally Chandrasekhar (1961)
has provided graphs and tables for n(k) corresponding to
convection in the presence of magnetic fields and rotation and
for the case of Helmholtz-Kelvin instabilities.

VIII. CONCLUSIONS

We have derived a general expression for « in terms of the
growth rate of the unstable modes driving the turbulence,

equation (9). This general result is then applied to the case of
convective turbulence, equation (12).

While it has been customary to treat « as a constant
parameter, in recent years several authors (Williams 1980;
Frank and King 1981; Smak 1982) have shown that self-con-
sistent convective solutions for disks require different « values
for different values of 7 and R, as our formalism suggests. The
present analysis does offer a scheme to compute a and,
consequently, the amount of heat generated by turbulent
viscosity. '

The authors would like to thank Drs. A. G. W. Cameron’
and W. Cabot for useful conversations.
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